1.0 M

For each question, the two pH values are being compared. How many times stronger or weaker is the pH of the solution?

- 1. pH 5 → pH 3
- 2. pH 8 → pH 4
- 3. pH 10 \rightarrow pH 7
- 4. pH 14 → pH 7
- 5. pH 3 → pH 6 _____

Video 13.5: Neutralization & Titrations

Complete and balance each of the acid base neutralization reactions below.

- 1. ___H₂SO₄ + ___Mg(OH)₂ → 2+10+ + WgSO₄
- 2. $3 \text{ HNO}_3 + \text{Al}(\text{OH})_3 \rightarrow 3 \text{ HOH} + \text{Al}(\text{NO}_3)_3$
- 3. $2 H_3PO_4 + 3 Ca(OH)_2 \rightarrow 6 HOH + Ca_3(PO_4)_2$
- 4. __HI + __KOH → HOH + KI
- 5. <u>2</u>HBr + __Ba(OH)2 →2HOH + BaBr₂
- 6. __ HCI + __ KOH → HOH + KCI
- 7. __H3PO4 + 3 LIOH + Li3 DO4
- 8. 2HF+ __Ca(OH)2 → 2HOH + CaF2
- 9. In a titration of HClO₄ with NaOH, 100.0 mL of the base was required to neutralize 20.0 mL of 5.0 M HClO₄. What is the molarity of the NaOH? (Be sure to write the neutralization reaction.)

HCIUY + NOOH -> HOHI + NOCIUY 1200 MAVA = MBVB (5.0MX20.0ML) = MB (100.0ML)

10. In a titration of HNO₃ with NaOH, 60.0 mL of 0.020 M NaOH was needed to neutralize 15.0 mL of HNO₃. What is the molarity of the acid? (Write the neutralization reaction.)

HNO3+ LAOH -> HOH + Na NO3

Ma Va = Mg VB

MA(15 111) = (0.020MY (0011)) MA = 0.08M

Practice Packet: Acids and Bases

M	R	S"	M	In	T	Z
---	---	----	---	----	---	---

11. If 10.0 mL of 0.300 M KOH are required to neutralize 30.0 mL of stomach acid (HCl),							
what is the molarity of the $\langle \bigcirc \vdash +$	stomach acid? (Wr	ite the neutrali	zation reaction.)	Mach III			
KOH +	$HCI \rightarrow$	HOH.	+ KCI	W#= 0. 12			
MAVA = MBVB	Un /20	0.11) -	(0.300M)(10.0uc)			
, WH - LBMB	1-14 (D	000) -	(0.500)	(10.0)			

12. If it takes 50 mL of 0.5 M KOH solution to completely neutralize 125 mL of sulfuric acid

2. If it takes 50 mL of 0.5 M KOH solution to completely neutralize 123 in 30 solution (H_2SO_4) what is the concentration of the H_2SO_4 solution?

2 KOH + H_2SO_4 \longrightarrow 2 HOH + K_2SO_4 2 HOH + K_2SO_4 2 HOH + K_2SO_4 Citration Practice: K_2SO_4 K_2SO_4

A titration was set up and used to determine the unknown molar concentration of a solution of NaOH. A 1.2 M HCl solution was used as the titration standard. The following data were collected.

	Trial 1	Trial 2	Trial 3	Trial 4
Volume of 1.2 M	10.0 mL	10.0 mL	10.0 mL	10.0 mL
HCl Intial buret	0.0 mL	12.2 mL	23.2 mL	35.2 mL
reading of NaOH				47.7
Final buret	12.2 mL	23.2 mL	35.2 mL	47.7 mL